A singular convolution kernel without pseudo-periods

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of a New Fractional Derivative without Singular Kernel

We introduce the fractional integral corresponding to the new concept of fractional derivative recently introduced by Caputo and Fabrizio and we study some related fractional differential equations.

متن کامل

A new Definition of Fractional Derivative without Singular Kernel

In the paper, we present a new definition of fractional derivative with a smooth kernel which takes on two different representations for the temporal and spatial variable. The first works on the time variables; thus it is suitable to use the Laplace transform. The second definition is related to the spatial variables, by a non-local fractional derivative, for which it is more convenient to work...

متن کامل

Interval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets

This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...

متن کامل

Singular integral equations of convolution type with Hilbert kernel and a discrete jump problem

*Correspondence: [email protected] School of Mathematical Science, Qufu Normal University, Jingxuanxi Road 57, Qufu, Shandong 273165, P.R. China Abstract One class of singular integral equations of convolution type with Hilbert kernel is studied in the space L2[–π ,π ] in the article. Such equations can be changed into either a system of discrete equations or a discrete jump problem depending o...

متن کامل

Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel

An integro-differential equation involving a convolution integral with a weakly singular kernel is considered. The kernel can be that of a fractional integral. The integro-differential equation is discretized using the discontinuous Galerkin method with piecewise constant basis functions. Sparse quadrature is introduced for the convolution term to overcome the problem with the growing amount of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1981

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000019383